3.3.65 \(\int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx\) [265]

3.3.65.1 Optimal result
3.3.65.2 Mathematica [B] (verified)
3.3.65.3 Rubi [A] (verified)
3.3.65.4 Maple [B] (warning: unable to verify)
3.3.65.5 Fricas [A] (verification not implemented)
3.3.65.6 Sympy [F]
3.3.65.7 Maxima [B] (verification not implemented)
3.3.65.8 Giac [F]
3.3.65.9 Mupad [F(-1)]

3.3.65.1 Optimal result

Integrand size = 35, antiderivative size = 156 \[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {(19 A+5 B) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {(A-B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {(9 A-B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}} \]

output
-1/4*(A-B)*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(5/2)-1/16*(9*A- 
B)*sec(d*x+c)^(3/2)*sin(d*x+c)/a/d/(a+a*sec(d*x+c))^(3/2)+1/32*(19*A+5*B)* 
arctanh(1/2*sin(d*x+c)*a^(1/2)*sec(d*x+c)^(1/2)*2^(1/2)/(a+a*sec(d*x+c))^( 
1/2))/a^(5/2)/d*2^(1/2)
 
3.3.65.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(443\) vs. \(2(156)=312\).

Time = 6.10 (sec) , antiderivative size = 443, normalized size of antiderivative = 2.84 \[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx=-\frac {A \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d (a (1+\sec (c+d x)))^{5/2}}-\frac {B \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{4 d (a (1+\sec (c+d x)))^{5/2}}-\frac {9 A \sec ^{\frac {3}{2}}(c+d x) (1+\sec (c+d x)) \sin (c+d x)}{16 d (a (1+\sec (c+d x)))^{5/2}}-\frac {19 A \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) (1+\sec (c+d x))^2 \tan (c+d x)}{16 \sqrt {2} d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{5/2}}-\frac {5 B (1+\sec (c+d x))^{5/2} \left (\frac {2 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{d (1+\sec (c+d x))^{3/2}}-\frac {\left (2 \arcsin \left (\sqrt {\sec (c+d x)}\right )-\sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right )\right ) \tan (c+d x)}{d \sqrt {1-\sec (c+d x)} \sqrt {1+\sec (c+d x)}}-\frac {2 \left (\arcsin \left (\sqrt {1-\sec (c+d x)}\right )+\sqrt {1-\sec (c+d x)} \sqrt {\sec (c+d x)}\right ) \tan (c+d x)}{d \sqrt {1-\sec (c+d x)} \sqrt {1+\sec (c+d x)}}\right )}{32 (a (1+\sec (c+d x)))^{5/2}} \]

input
Integrate[(Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^( 
5/2),x]
 
output
-1/4*(A*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(d*(a*(1 + Sec[c + d*x]))^(5/2)) 
- (B*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(4*d*(a*(1 + Sec[c + d*x]))^(5/2)) - 
 (9*A*Sec[c + d*x]^(3/2)*(1 + Sec[c + d*x])*Sin[c + d*x])/(16*d*(a*(1 + Se 
c[c + d*x]))^(5/2)) - (19*A*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - S 
ec[c + d*x]]]*(1 + Sec[c + d*x])^2*Tan[c + d*x])/(16*Sqrt[2]*d*Sqrt[1 - Se 
c[c + d*x]]*(a*(1 + Sec[c + d*x]))^(5/2)) - (5*B*(1 + Sec[c + d*x])^(5/2)* 
((2*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(d*(1 + Sec[c + d*x])^(3/2)) - ((2*Ar 
cSin[Sqrt[Sec[c + d*x]]] - Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqr 
t[1 - Sec[c + d*x]]])*Tan[c + d*x])/(d*Sqrt[1 - Sec[c + d*x]]*Sqrt[1 + Sec 
[c + d*x]]) - (2*(ArcSin[Sqrt[1 - Sec[c + d*x]]] + Sqrt[1 - Sec[c + d*x]]* 
Sqrt[Sec[c + d*x]])*Tan[c + d*x])/(d*Sqrt[1 - Sec[c + d*x]]*Sqrt[1 + Sec[c 
 + d*x]])))/(32*(a*(1 + Sec[c + d*x]))^(5/2))
 
3.3.65.3 Rubi [A] (verified)

Time = 1.11 (sec) , antiderivative size = 213, normalized size of antiderivative = 1.37, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.314, Rules used = {3042, 4507, 27, 3042, 4508, 27, 3042, 4501, 3042, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a \sec (c+d x)+a)^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}dx\)

\(\Big \downarrow \) 4507

\(\displaystyle \frac {\int -\frac {a (A-B)-4 a (A+B) \sec (c+d x)}{2 \sqrt {\sec (c+d x)} (\sec (c+d x) a+a)^{3/2}}dx}{4 a^2}+\frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{4 d (a \sec (c+d x)+a)^{5/2}}-\frac {\int \frac {a (A-B)-4 a (A+B) \sec (c+d x)}{\sqrt {\sec (c+d x)} (\sec (c+d x) a+a)^{3/2}}dx}{8 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{4 d (a \sec (c+d x)+a)^{5/2}}-\frac {\int \frac {a (A-B)-4 a (A+B) \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}dx}{8 a^2}\)

\(\Big \downarrow \) 4508

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{4 d (a \sec (c+d x)+a)^{5/2}}-\frac {\frac {\int \frac {a^2 (9 A-B)-2 a^2 (5 A+3 B) \sec (c+d x)}{2 \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}}dx}{2 a^2}-\frac {a (5 A+3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{4 d (a \sec (c+d x)+a)^{5/2}}-\frac {\frac {\int \frac {a^2 (9 A-B)-2 a^2 (5 A+3 B) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}}dx}{4 a^2}-\frac {a (5 A+3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{4 d (a \sec (c+d x)+a)^{5/2}}-\frac {\frac {\int \frac {a^2 (9 A-B)-2 a^2 (5 A+3 B) \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {a (5 A+3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}\)

\(\Big \downarrow \) 4501

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{4 d (a \sec (c+d x)+a)^{5/2}}-\frac {\frac {\frac {2 a^2 (9 A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-a^2 (19 A+5 B) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx}{4 a^2}-\frac {a (5 A+3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{4 d (a \sec (c+d x)+a)^{5/2}}-\frac {\frac {\frac {2 a^2 (9 A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-a^2 (19 A+5 B) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {a (5 A+3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}\)

\(\Big \downarrow \) 4295

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{4 d (a \sec (c+d x)+a)^{5/2}}-\frac {\frac {\frac {2 a^2 (19 A+5 B) \int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}+\frac {2 a^2 (9 A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}}{4 a^2}-\frac {a (5 A+3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{4 d (a \sec (c+d x)+a)^{5/2}}-\frac {\frac {\frac {2 a^2 (9 A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {\sqrt {2} a^{3/2} (19 A+5 B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {a (5 A+3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}\)

input
Int[(Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^(5/2),x 
]
 
output
((A - B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(4*d*(a + a*Sec[c + d*x])^(5/2)) 
 - (-1/2*(a*(5*A + 3*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d*(a + a*Sec[c + 
 d*x])^(3/2)) + (-((Sqrt[2]*a^(3/2)*(19*A + 5*B)*ArcTanh[(Sqrt[a]*Sqrt[Sec 
[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/d) + (2*a^2* 
(9*A - B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]]))/( 
4*a^2))/(8*a^2)
 

3.3.65.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4501
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e 
 + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[(a*A*m 
 - b*B*n)/(b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x] 
, x] /; FreeQ[{a, b, d, e, f, A, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a 
^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]
 

rule 4507
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[d*(A*b 
- a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(a*f*( 
2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)* 
(d*Csc[e + f*x])^(n - 1)*Simp[A*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m 
 - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, 
A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && G 
tQ[n, 0]
 

rule 4508
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b 
- a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(2*m + 
 1))), x] - Simp[1/(a^2*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Cs 
c[e + f*x])^n*Simp[b*B*n - a*A*(2*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[ 
e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B 
, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]
 
3.3.65.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(418\) vs. \(2(131)=262\).

Time = 5.01 (sec) , antiderivative size = 419, normalized size of antiderivative = 2.69

method result size
default \(-\frac {\sqrt {-\frac {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right ) \sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \left (2 A \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}-2 B \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}-11 A \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )+3 B \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )-19 A \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )}{\sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right )-5 B \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )}{\sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right )\right )}{32 a^{3} d \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\) \(419\)
parts \(-\frac {A \sqrt {-\frac {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right ) \sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \left (2 \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}-11 \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )-19 \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )}{\sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right )\right )}{32 d \,a^{3} \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}-\frac {B \left (-\frac {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right )^{\frac {3}{2}} \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )^{2} \sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \left (2 \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}-3 \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )+5 \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )}{\sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right )\right )}{32 d \,a^{3} \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1\right ) \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\) \(583\)

input
int((A+B*sec(d*x+c))*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(5/2),x,method=_RET 
URNVERBOSE)
 
output
-1/32/a^3/d*(-((1-cos(d*x+c))^2*csc(d*x+c)^2+1)/((1-cos(d*x+c))^2*csc(d*x+ 
c)^2-1))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)*(-2*a/((1-cos(d*x+c))^2*c 
sc(d*x+c)^2-1))^(1/2)*(2*A*(-(1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(1-cos 
(d*x+c))^3*csc(d*x+c)^3-2*B*(-(1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(1-co 
s(d*x+c))^3*csc(d*x+c)^3-11*A*(-(1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(-c 
ot(d*x+c)+csc(d*x+c))+3*B*(-(1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(-cot(d 
*x+c)+csc(d*x+c))-19*A*arctan(1/(-(1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*( 
-cot(d*x+c)+csc(d*x+c)))-5*B*arctan(1/(-(1-cos(d*x+c))^2*csc(d*x+c)^2-1)^( 
1/2)*(-cot(d*x+c)+csc(d*x+c))))/(-(1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)
 
3.3.65.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 502, normalized size of antiderivative = 3.22 \[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx=\left [\frac {\sqrt {2} {\left ({\left (19 \, A + 5 \, B\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (19 \, A + 5 \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (19 \, A + 5 \, B\right )} \cos \left (d x + c\right ) + 19 \, A + 5 \, B\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - \frac {4 \, {\left ({\left (13 \, A - 5 \, B\right )} \cos \left (d x + c\right )^{2} + {\left (9 \, A - B\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, -\frac {\sqrt {2} {\left ({\left (19 \, A + 5 \, B\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (19 \, A + 5 \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (19 \, A + 5 \, B\right )} \cos \left (d x + c\right ) + 19 \, A + 5 \, B\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) + \frac {2 \, {\left ({\left (13 \, A - 5 \, B\right )} \cos \left (d x + c\right )^{2} + {\left (9 \, A - B\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{32 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \]

input
integrate((A+B*sec(d*x+c))*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(5/2),x, algo 
rithm="fricas")
 
output
[1/64*(sqrt(2)*((19*A + 5*B)*cos(d*x + c)^3 + 3*(19*A + 5*B)*cos(d*x + c)^ 
2 + 3*(19*A + 5*B)*cos(d*x + c) + 19*A + 5*B)*sqrt(a)*log(-(a*cos(d*x + c) 
^2 - 2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d* 
x + c))*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x 
 + c) + 1)) - 4*((13*A - 5*B)*cos(d*x + c)^2 + (9*A - B)*cos(d*x + c))*sqr 
t((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^3 
*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d) 
, -1/32*(sqrt(2)*((19*A + 5*B)*cos(d*x + c)^3 + 3*(19*A + 5*B)*cos(d*x + c 
)^2 + 3*(19*A + 5*B)*cos(d*x + c) + 19*A + 5*B)*sqrt(-a)*arctan(sqrt(2)*sq 
rt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))/(a*sin(d 
*x + c))) + 2*((13*A - 5*B)*cos(d*x + c)^2 + (9*A - B)*cos(d*x + c))*sqrt( 
(a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^3*d 
*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)]
 
3.3.65.6 Sympy [F]

\[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \sqrt {\sec {\left (c + d x \right )}}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{2}}}\, dx \]

input
integrate((A+B*sec(d*x+c))*sec(d*x+c)**(1/2)/(a+a*sec(d*x+c))**(5/2),x)
 
output
Integral((A + B*sec(c + d*x))*sqrt(sec(c + d*x))/(a*(sec(c + d*x) + 1))**( 
5/2), x)
 
3.3.65.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 5924 vs. \(2 (131) = 262\).

Time = 0.91 (sec) , antiderivative size = 5924, normalized size of antiderivative = 37.97 \[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx=\text {Too large to display} \]

input
integrate((A+B*sec(d*x+c))*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(5/2),x, algo 
rithm="maxima")
 
output
1/32*((19*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2 
*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 
 2*sin(1/2*d*x + 1/2*c) + 1))*cos(4*d*x + 4*c)^2 + 304*(log(cos(1/2*d*x + 
1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos( 
1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1)) 
*cos(3*d*x + 3*c)^2 + 684*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2* 
c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2* 
d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(2*d*x + 2*c)^2 + 304*(lo 
g(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) 
 + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d* 
x + 1/2*c) + 1))*cos(d*x + c)^2 + 19*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2 
*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 
 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(4*d*x + 4*c)^ 
2 + 304*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d 
*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2 
*sin(1/2*d*x + 1/2*c) + 1))*sin(3*d*x + 3*c)^2 + 684*(log(cos(1/2*d*x + 1/ 
2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/ 
2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*s 
in(2*d*x + 2*c)^2 + 304*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c) 
^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2...
 
3.3.65.8 Giac [F]

\[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {\sec \left (d x + c\right )}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate((A+B*sec(d*x+c))*sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(5/2),x, algo 
rithm="giac")
 
output
integrate((B*sec(d*x + c) + A)*sqrt(sec(d*x + c))/(a*sec(d*x + c) + a)^(5/ 
2), x)
 
3.3.65.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx=\int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

input
int(((A + B/cos(c + d*x))*(1/cos(c + d*x))^(1/2))/(a + a/cos(c + d*x))^(5/ 
2),x)
 
output
int(((A + B/cos(c + d*x))*(1/cos(c + d*x))^(1/2))/(a + a/cos(c + d*x))^(5/ 
2), x)